skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Svendsen, Lea"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The Arctic sea ice cover is strongly influenced by internal variability on decadal time scales, affecting both short-term trends and the timing of the first ice-free summer. Several mechanisms of variability have been proposed, but how these mechanisms manifest both spatially and temporally remains unclear. The relative contribution of internal variability to observed Arctic sea ice changes also remains poorly quantified. Here, we use a novel technique called low-frequency component analysis to identify the dominant patterns of winter and summer decadal Arctic sea-ice variability in the satellite record. The identified patterns account for most of the observed regional sea ice variability and trends, and thus help to disentangle the role of forced and internal sea ice changes over the satellite record. In particular, we identify a mode of decadal ocean-atmosphere-sea ice variability, characterized by an anomalous atmospheric circulation over the central Arctic, that accounts for approximately 30 % of the accelerated decline in pan-Arctic summer sea-ice area between 2000 and 2012. For winter sea ice, we find that internal variability has dominated decadal trends in the Bering Sea, but has contributed less to trends in the Barents and Kara Seas. These results, which detail the first purely observation-based estimate of the contribution of internal variability to Arctic sea ice trends, suggest a lower estimate of the contribution from internal variability than most model-based assessments. 
    more » « less